Component Selection for Easier Design and Manufacture of Electronics


Reading time ( words)

“Simplify, simplify, simplify.”

                      —Henry David Thoreau 

Thoreau penned his simple lifestyle mantra more than 150 years ago and it still as valid today as it was when he first captured and recorded his thoughts on paper. He was not the first to extoll the importance of simplicity, but he said it in a memorable way.

Achieving simplicity has been deemed a worthy objective by many philosophers over centuries, and people often profess to seek simplicity in their lives. In the world of high tech, simplicity is arguably one of the foundational objectives of most of the technologies that surround us today. Certainly this is true in terms of how product designers are trying to create interfaces that allow even the most nontechnical users to get what they need from electronic products with a minimum of hassle.

However, that interface simplicity is undergirded by a massively complex electromechanical substructure of circuits, sensors and components. Pop open any high-end electronic device and you will be met by an impressive mass of densely packed components and circuits. Presently, those components are available in a wide array of formats, with a number of different lead shapes and forms along with the device’s mechanical outline. Presently, there are J-leads, I-leads, gull-wing leads, posts, balls and no leads at all. Mechanical outlines are generally square and rectangular, but the bodies can have a wide range of dimensions in X, Y and Z. While area array technology has helped to make things smaller, it has also upped the complexity factor from a design perspective by mixing grids and land shapes and sizes.

Why so many options? It is because there is not, nor has there ever been, a truly coherent approach to the process of selecting package structures for ICs or any other components for that matter. Yes, a roadmap for electronic component lead pitch was introduced with the advent of SMT, and that roadmap said that every next-generation lead pitch should be 80% of the size of the previous generation lead pitch.

Read the full article here.


Editor's Note: This article originally appeared in the November 2014 issue of The PCB Design Magazine.

Share

Print


Suggested Items

Altium Prepares for Munich Show as Growth Continues

01/17/2019 | Andy Shaughnessy, Design007 Magazine
It’s been just two months since the AltiumLive event drew several hundred designers to San Diego, California, and Altium is already gearing up for the next show in Munich, Germany (January 15–17, 2019). I recently spoke with Chris Donato, VP of global sales for Altium, about the upcoming AltiumLive show as well as the company’s growth over the past few years.

January 2019 Issue of Design007 Magazine Available Now

01/15/2019 | I-Connect007
The component shortage is getting crazy. Some PCB designers are finding their favorite capacitors on 50-week and 80-week lead times, or worse. How do you design a board today when the components you need won’t be available for a year or more? In the January 2019 issue of Design007 Magazine, we asked our expert contributors to explain the current component shortage, as well as some of the workarounds that can help you get your next design out the door sooner rather than later.

A Fractal Conversation with Jim Howard and Greg Lucas

01/15/2019 | Barry Matties and Andy Shaughnessy, I-Connect007
Veteran PCB technologists Jim Howard and Greg Lucas have made an interesting discovery: Certain shapes of copper planes make a PCB run more efficiently than other shapes, a process they dubbed fractal design. It doesn’t appear to cost a penny more, and testing suggests that fractal design techniques could eliminate edge noise. Barry Matties and Andy Shaughnessy asked Jim and Greg to discuss the fractal design process, and the advantages of using this technique.



Copyright © 2019 I-Connect007. All rights reserved.